\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [571]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 197 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (A b-a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b^2 d}-\frac {2 \left (3 a A b-3 a^2 B-b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^3 d}+\frac {2 a^2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^3 (a+b) d}+\frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*B*sin(d*x+c)/b/d/sec(d*x+c)^(1/2)+2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(si
n(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^2/d-2/3*(3*A*a*b-3*B*a^2-B*b^2)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^3/d+
2*a^2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2
))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^3/(a+b)/d

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3039, 4119, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^3 d (a+b)}-\frac {2 \left (-3 a^2 B+3 a A b-b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^3 d}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}} \]

[In]

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]

[Out]

(2*(A*b - a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*d) - (2*(3*a*A*b - 3*a^2*
B - b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*b^3*d) + (2*a^2*(A*b - a*B)*Sqr
t[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^3*(a + b)*d) + (2*B*Sin[c + d
*x])/(3*b*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4119

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)), x]
+ Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + A*a*(n +
1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b
- a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (b+a \sec (c+d x))} \, dx \\ & = \frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}}-\frac {2 \int \frac {-\frac {3}{2} (A b-a B)-\frac {1}{2} b B \sec (c+d x)-\frac {1}{2} a B \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx}{3 b} \\ & = \frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}}-\frac {2 \int \frac {-\frac {3}{2} b (A b-a B)-\left (\frac {b^2 B}{2}-\frac {3}{2} a (A b-a B)\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 b^3}+\frac {\left (a^2 (A b-a B)\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx}{b^3} \\ & = \frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}}+\frac {(A b-a B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{b^2}-\frac {\left (3 a A b-3 a^2 B-b^2 B\right ) \int \sqrt {\sec (c+d x)} \, dx}{3 b^3}+\frac {\left (a^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^3} \\ & = \frac {2 a^2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^3 (a+b) d}+\frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}}+\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b^2}-\frac {\left (\left (3 a A b-3 a^2 B-b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^3} \\ & = \frac {2 (A b-a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b^2 d}-\frac {2 \left (3 a A b-3 a^2 B-b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^3 d}+\frac {2 a^2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^3 (a+b) d}+\frac {2 B \sin (c+d x)}{3 b d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.01 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.41 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \csc (c+d x) \left (-3 A b^2+3 a b B+3 A b^2 \sec ^2(c+d x)-3 a b B \sec ^2(c+d x)+b^2 B \sin (c+d x) \tan (c+d x)-3 b (A b-a B) E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+b (3 A b-3 a B+b B) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}-3 a A b \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+3 a^2 B \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}\right )}{3 b^3 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]

[Out]

(2*Csc[c + d*x]*(-3*A*b^2 + 3*a*b*B + 3*A*b^2*Sec[c + d*x]^2 - 3*a*b*B*Sec[c + d*x]^2 + b^2*B*Sin[c + d*x]*Tan
[c + d*x] - 3*b*(A*b - a*B)*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2]
 + b*(3*A*b - 3*a*B + b*B)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2]
- 3*a*A*b*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] + 3*a^2*
B*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2]))/(3*b^3*d*Sec[c
 + d*x]^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(821\) vs. \(2(257)=514\).

Time = 6.48 (sec) , antiderivative size = 822, normalized size of antiderivative = 4.17

method result size
default \(\text {Expression too large to display}\) \(822\)

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a*b^
2-4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^3+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2*b-3*A*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3-2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a*b^2+
2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^3-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^3+3*B*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/b^3/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right ) \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a + b*cos(c + d*x))*sec(c + d*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))), x)